If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+x-156=0
a = 2; b = 1; c = -156;
Δ = b2-4ac
Δ = 12-4·2·(-156)
Δ = 1249
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{1249}}{2*2}=\frac{-1-\sqrt{1249}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{1249}}{2*2}=\frac{-1+\sqrt{1249}}{4} $
| (4x+4)-(7x-8)/4x-5=4/3 | | 8.5z=144.5 | | 72=24=w | | g+3g-g=12 | | 16=n+4 | | 6.25z=81.25 | | 14(2)^x=112 | | 3(x+10)+4x=1/2(x+4)+2 | | (y-6)-(y+8)=7y | | 2c-c+3c-2c=10 | | 1/4z=31/4 | | 8p+6=26 | | 4.57+z=17.57 | | 7r+r+4r-8r-3r=9 | | 3x^2+x+12=x^2+2x+6+2x^2 | | 10w-4w+w=14 | | 2(4c+3)=8 | | 3x+2x-40+2x+10=180 | | 2n^2+3n-54=0 | | 6(x-2)+4=42-2x | | 0=-4.9t^2+30t+6 | | 6x=32+14-4x | | 5(2x-7)-3x+2=4-(4x-7) | | 24(3–k/2)=8k+72(k+1) | | 122=-38+4x | | (4x+10)+(2x+20)=90 | | 32=-38-10x | | 30(x-5)=28x-51 | | -29=-8+x/4 | | 8x17/8=- | | 12x-2=6x+22 | | R=2w+3 |